ارائه مدل خط‌مشی‌گذاری شواهدمحور برای پیشگیری از انتشار کرونا ویروس (نمونه‌کاوی: شهر تهران)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت تکنولوژی، دانشکده مدیریت، اقتصاد و مهندسی پیشرفت، دانشگاه علم و صنعت ایران، تهران، ایران.

2 استادیار، گروه مدیریت و فلسفه علم و فناوری، دانشکده مدیریت، اقتصاد و مهندسی پیشرفت دانشگاه علم و صنعت ایران، تهران، ایران.

3 دانشجوی دکتری، گروه مدیریت دولتی، دانشکده مدیریت و حسابداری دانشگاه علامه طباطبائی، تهران، ایران.

4 استادیار، گروه مدیریت و مهندسی کسب‌وکار، دانشکده مدیریت، اقتصاد و مهندسی پیشرفت، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

هدف: هدف این پژوهش، پیشنهاد مداخله خط‌مشی به نهادهای مسئول، به‌منظور پیشگیری از انتشار ویروس کروناست. پاندمی کووید 19 اثرگذارترین بیماری از ابتدای سال 2020 است که علاوه بر مرگ‌ومیر بسیار، اثرهای اقتصادی و اجتماعی زیادی نیز در پی داشته است. پژوهشگران بسیاری برای درمان و تهیه واکسن آن تلاش می‌کنند؛‌ اما یکی از اقدام‌های اساسی، پیشگیری از آن است؛ زیرا پیشگیری سریع‌ترین راه کاهش مرگ‌ومیر و تبعات منفی آن محسوب می‌شود.
روش: با حداکثر استفاده از داده‌های حداقلی در کشور و در نظرگرفتن قواعد جدید حاکم بر رفتار این ویروس، از رویکرد خط‌مشی‌گذاری شواهدمحور و مدل‌سازی عامل‌مبنا استفاده شده است که چهار مرحله ساخت شبیه‌ساز، کالیبره‌کردن آن، اعتبارسنجی و استفاده از آن برای تخمین چگونگی تکامل بیماری همه‌گیر را شامل می‌شود.
یافته‌ها: به‌منظور تعیین عوامل اصلی مؤثر بر پیشگیری، چهار سناریو سیاستی، شامل قرنطینه عمومی، عدم مداخله، مداخله منفعل و مداخله­ هوشمند بررسی شد. در شبیه‌سازی سناریوهای سیاستی، عامل‌های میزان حرکت و میزان سرایت، به نسبت تغییر می‌کند. نتایج شبیه‌سازی نشان داد که کاهش 50درصدی میزان حرکت، کاهش بیش از ۸۰ درصد تعداد مبتلایان را در پی خواهد داشت و کاهش ۱۰درصد سرایت در قالب مداخله هوشمند، به کاهش 30 درصدی تعداد مبتلایان منجر خواهد شد.
نتیجه‌گیری: در نهایت، دو عامل میزان حرکت و میزان سرایت، به‌عنوان عوامل مهم انتشار ویروس کرونا شناسایی شد. از این رو، پیشنهاد می‌شود که نهادهای مسئول برای کاهش سریع‌تر میزان شیوع کرونا، بر طراحی مداخله هوشمند مرتبط با کاهش این دو عامل تمرکز کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Presenting an Evidence-Based Policymaking Model to Prevent the Coronavirus Diffusion (Case Study: Tehran)

نویسندگان [English]

  • Amir Mohammad Sharifi 1
  • Mahdi Abdolhamid 2
  • Sahar Babaei 3
  • Yaser Sobhanifard 4
1 Ph.D. Candidate, Department of Technology Management, School of Management, Economics and Progress Engineering, Iran University of Science and Technology, Tehran, Iran.
2 Assistant Prof., Department of Management and Philosophy of Science and Technology, School of Management, Economics and Progress Engineering Iran University of Science and Technology, Tehran, Iran.
3 Ph.D. Candidate, Department of Public Management, Faculty of Management and Accounting, Allameh Tabataba'i University, Tehran, Iran.
4 Assistant Prof., Department of Management and Business Engineering, School of Management, Economics and Progress Engineering Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

Objective: The purpose of this paper is to suggest intervention routes to responsible institutions in order to prevent the diffusion of coronavirus. The covid 19 pandemic is the most effective disease since the beginning of 2020, which in addition to many deaths, has had many economic and social effects. Many researchers are trying to treat and develop a vaccine, but one of the most basic measures is prevention because prevention is the fastest way to reduce mortality and its negative consequences.
Methods: For this purpose, with the maximum use of minimal data in the country and considering the new rules governing the behavior of this virus, the evidence-based policy-making method and Agent-based modeling have been used, which includes four steps of simulator construction, calibration, Validation, and its use to estimate how the disease is evolving.
Results: In order to determine the main factors affecting the prevention, four policy scenarios including general quarantine, non-intervention, passive intervention and intelligent intervention were examined. In simulating policy scenarios, the factors of movement rate and transmission risk change proportionally. The quarantine in an optimistic state itself includes four categories of scenarios based on different quarantine methods, and finally, the stop and treatment-related scenarios were also examined. The simulation results showed that a 50% reduction in the movement rate would lead to a reduction of more than 80% in the number of patients, and a 10% decrease in the transmission risk index would lead to a 30% reduction in the number of patients.
Conclusion: Finally, two factors of movement rate and transmission risk index were identified as the most important factors in the diffusion of coronavirus. Therefore, it is suggested that the responsible institutions focus on designing intelligent interventions related to the reduction of these two factors in order to reduce the prevalence of corona more quickly.

کلیدواژه‌ها [English]

  • Corona
  • Simulation
  • Evidence-based policy
  • Prevention
  • Agent-based modeling
References
Abdolhosseinzadeh, M. and Abdolhamid, M. (2020), Presentation of a school of government model through a comparative study of selected schools. Kybernetes, 49(12), 2947-2976. https://doi.org/10.1108/K-05-2019-0328
Adhikari, S. P., Meng, S., Wu, Y. J., Mao, Y. P., Ye, R. X., Wang, Q. Z., ... & Zhou, H. (2020). Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious diseases of poverty, 9(1), 1-12.
Agrawal, S., Bhandari, S., Bhattacharjee, A., Deo, A., Dixit, N. M., Harsha, P., ... & Yasodharan, S. (2020). City-Scale Agent-Based Simulators for the Study of Non-Pharmaceutical Interventions in the Context of the COVID-19 Epidemic. Journal of the Indian Institute of Science, 1-39.
Battegay, M., Kuehl, R., Tschudin-Sutter, S., Hirsch, H. H., Widmer, A. F., & Neher, R. A. (2020). 2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate–a word of caution. Swiss medical weekly, 150(0506).‏
Billah, M. A., Miah, M. M., & Khan, M. N. (2020). Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. PloS one, 15(11), e0242128.‏
Campbell, S., Benita, S., Coates, E., Davies, P., & Penn, G. (2007). Analysis for policy: evidence-based policy in practice. Government Social Research Unit, HM Treasury.
Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., ... & Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395-400.
Cuevas, E. (2020). An agent-based model to evaluate the COVID-19 transmission risks in facilities. Computers in biology and medicine, 121, 103827.
Davies (2004) Is evidence-based government possible? Jerry Lee Lecture, presented at the 4th Annual Campbell Collaboration Colloquium, Washington DC.
Davies, H. T. O., Nutley, S. M. & Smith P. C. (2000). What works? Evidence-based policy and practice in public services. Bristol: The Policy Press.
Forman, R., Atun, R., McKee, M., & Mossialos, E. (2020). 12 Lessons learned from the management of the coronavirus pandemic. Health Policy, 124(6), 577-580.
Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1-10.‏
He, X., Lau, E. H., Wu, P., Deng, X., Wang, J., Hao, X., ... & Leung, G. M. (2020). Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature medicine, 26(5), 672-675.
Hellewell, J., Abbott, S., Gimma, A., Bosse, N. I., Jarvis, C. I., Russell, T. W., ... & Eggo, R. M. (2020). Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 8(4), e488-e496.
Hibbing J. R., and Theiss-Morse, E. (1995). Congress as Public Enemy: Public Attitudes Towards American Political Institutions. New York: Cambridge University Press.
Hibbing J. R., and Theiss-Morse, E. (2002), Stealth Democracy: America’s Beliefs about How Govennment Should Work. New York: Cambridge University Press.
Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., ... & Shen, H. (2020). Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Science China Life Sciences, 63(5), 706-711.
Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., ... & Lessler, J. (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Annals of internal medicine, 172(9), 577-582.
Mahmood, I., Arabnejad, H., Suleimenova, D., Sassoon, I., Marshan, A., Serrano-Rico, A., ... & Groen, D. (2020). FACS: a geospatial agent-based simulator for analysing COVID-19 spread and public health measures on local regions. Journal of Simulation, 1-19.
Makarov, V. L., Bakhtizin, A. R., Sushko, E. D., & Ageeva, A. F. (2020). COVID-19 Epidemic Modeling–Advantages of an Agent-Based Approach. Ekonomicheskie i Sotsialnye Peremeny, 13(4), 58-73.
Ohadian Moghadam, S. O., & Afshar, D. (2020). A review on coronavirus disease 2019 (COVID-19) in pediatric patients. Archives of Pediatric Infectious Diseases, 8(3), 1-9.
Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., ... & Agha, R. (2020). The socio-economic implications of the coronavirus and COVID-19 pandemic: a review. International journal of surgery, 78, 185-193.
Pawson, R. (2006). Evidence-based policy: A realist perspective. London: SAGE Performance and Innovation Unit (2000). Adding it up: improving analysis and modelling in Central Government. London: Performance and Innovation Unit.
Pourezzat, A.A., Mollaee, A., Firouzabadi, M. (2008), Building the future: Undertaking proactive strategy for national outlook. Futures, 40(10), 887-892, ISSN 0016-3287, https://doi.org/10.1016/j.futures.2008.07.024.
Report of the WHO–China joint mission on coronavirus disease 2019 (COVID-19); 2020; https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
Rockett, R. J., Arnott, A., Lam, C., Sadsad, R., Timms, V., Gray, K. A., ... & Sintchenko, V. (2020). Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nature medicine, 26(9), 1398-1404.
Sanderson, I. (2002). Evaluation, policy learning and evidence-based policy making. Public Administration, 80(1), 1-22.
Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91-98.
Silva, P. C., Batista, P. V., Lima, H. S., Alves, M. A., Guimarães, F. G., & Silva, R. C. (2020). COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions. Chaos, Solitons & Fractals, 139, 110088.
Spinelli, A., & Pellino, G. (2020). COVID-19 pandemic: perspectives on an unfolding crisis. Journal of British Surgery, 107(7), 785-787.
Wang, C., Pan, R., Wan, X., Tan, Y., Xu, L., Ho, C. S., & Ho, R. C. (2020). Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. International journal of environmental research and public health, 17(5), 1729.
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama, 323(13), 1239-1242.