ایمانی، حسین؛ قلیپور، آرین؛ آذر، عادل و پورعزت، علی اصغر (1398). شناسایی مؤلفههای سیستم تأمین منابع انسانی در راستای ارتقای سلامت نظام اداری. مدیریت دولتی، 11(2)، 251-284.
خلجستانی، سعید؛ پیری، حبیب و ستوده، رضا (1403). ارائه الگوی پیشبینی حساسیت جبران خدمات مدیرعامل با استفاده از الگوریتمهای فراابتکاری (ژنتیک و ازدحام ذرات). مدیریت دولتی، 16(3)، 562- 600.
جعفرنژاد چقوشی، احمد؛ رضاسلطانی، آرمان و خانی، امیرمحمد (1403). مقایسه مدلهای یادگیری جمعی برای پیشبینی رتبۀ کشوری دانشآموزان در کنکور سراسری. مدیریت صنعتی، 16(3)، 457- 481.
حسینی، سیدعابد (1403). تجزیهوتحلیل سیگنالهای مغزی به کمک آنتروپی پراکندگی سلسلهمراتبی و جنگل تصادفی در کاربرد بازاریابی عصبی. هوش محاسباتی در مهندسی برق، 15(1)، 41- 56.
عارف نژاد، محسن و سپهوند، رضا (1396). اثر جهتگیری مسیر شغلی متنوع بر قابلیت استخدامی کارکنان با نقش میانجی سرمایۀ مسیر شغلی (مطالعۀ موردی: ترخیصکاران گمرک شهید رجایی هرمزگان). مدیریت دولتی، 9(4)، 687-708.
عباسپور، عباس؛ رحیمیان، حمید؛ غیاثی ندوشن، سعید و نرگسیان، جواد (1397). ارائه مدل انتخاب کارکنان مستعد در سازمانهای دولتی. مدیریت دولتی، 10(4)، 605-628.
فهیمی، محمدرضا؛ رجبزاده قطری، علی؛ شعار مریم، خادمی مریم (۱۴۰۲). مدل پیشبینی تقاضای زنجیره تأمین با تنوع محصولی بالا با استفاده از روشهای یادگیری ماشین مبتنی بر تقویت گرادیان. فصلنامه علمی ـ پژوهشی اقتصاد و مدیریت شهری، 12(45)، 47- 66.
کزازی، ابوالفضل؛ خانی، امیر محمد و بیرامی، ثریا (1400). تأثیر مدیریت کیفیت زنجیرهتأمین و عملکرد نوآوری بر عملکردعملیاتی کسب وکارهای فعال در صنایع غذایی استان گلستان. مطالعات مدیریت صنعتی، 19(62)، 67-98.
مسلمانزاده، فاطمه؛ کوشا، حمیدرضا و صاعدی،کاظم (1403). پیشبینی ماهیت حریق مبتنی بر یادگیری ماشین: رگرسیون لجستیک یک الگوریتم تفسیر پذیر. پژوهشهای نظری و کاربردی هوش ماشینی، 2(1)،104-119.
References
Abbas Pour, A., Rahimian, H., Ghiasi Nodooshan, S. & Nargesian, J. (2018). Presenting a Model to Select Talented Employee in State Organizations. Journal of Public Administration, 10(4), 605-628. doi: 10.22059/jipa.2019.271575.2443 .(in Persian)
Al Akasheh, M., Faisal Malik, E., Hujran, O. & Zaki, N. (2023). A Decade of Research on Data Mining Techniques for Predicting Employee Turnover: A Systematic Literature Review.
Expert Systems with Applications, 121794.
https://doi.org/10.1016/j.eswa.2023.121794
Albaroudi, E., Mansouri, T. & Alameer, A. (2024). A Comprehensive Review of AI Techniques for Addressing Algorithmic Bias in Job Hiring.
AI, 5(1), 383–404. MDPI.
https://www.mdpi.com/2673-2688/5/1/19
Ali Shah, S. A., Uddin, I., Aziz, F., Ahmad, S., Al-Khasawneh, M. A. & Sharaf, M. (2020). An Enhanced Deep Neural Network for Predicting Workplace Absenteeism.
Complexity,
2020, 1–12.
https://doi.org/10.1155/2020/5843932
Al-Quhfa, H., Mothana, A., Aljbri, A. & Song, J. (2024). Enhancing Talent Recruitment in Business Intelligence Systems: A Comparative Analysis of Machine Learning Models.
Analytics,
3(3), 297–317.
https://doi.org/10.3390/analytics3030017
Alsheref, F. K., Fattoh, I. E. & Ead, M.W. (2022). Automated Prediction of Employee Attrition Using Ensemble Model Based on Machine Learning Algorithms.
Computational Intelligence and Neuroscience, 2022, 1–9.
https://doi.org/10.1155/2022/7728668
Arefnejad, M. & Sepahvnd, R. (2018). The Effect of the Diverse Job Orientation on the Employability of Employees Considering the Mediating Role of the Career Path Capital (Case Study: Shahid Rajaee Customs' Clearance Officers in Hormozgan). Journal of Public Administration, 9(4), 687-708. doi: 10.22059/jipa.2018.251033.2183 (in Persian)
Awad, M. & Fraihat, S. (2023). Recursive Feature Elimination with Cross-Validation with Decision Tree: Feature Selection Method for Machine Learning-Based Intrusion Detection Systems.
Journal of Sensor and Actuator Networks,
12(5), 67.
https://doi.org/10.3390/jsan12050067
Awasthi, N., Gautam, P. R. & Sharma, A. K. (2024). RFECV-DT: Recursive Feature Selection with Cross Validation using Decision Tree based Android Malware Detection.
2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6.
https://doi.org/10.1109/icccnt61001.2024.10725127
Brown, L., George, B. & Mehaffey-Kultgen, C. (2018). The development of a competency model and its implementation in a power utility cooperative: an action research study.
Industrial and Commercial Training, 50(3), 123–135.
https://doi.org/10.1108/ict-11-2017-0087
Ding, Y., Zhu, H., Chen, R. & Li, R. (2022). An Efficient AdaBoost Algorithm with the Multiple Thresholds Classification.
Applied Sciences,
12(12), 5872.
https://doi.org/10.3390/app12125872
Douider, M., Amrani, I., Balenghien, T., Bennouna, A., & Abik, M. (2022). Impact of Recursive Feature Elimination with Cross-validation in Modeling the Spatial Distribution of Three Mosquito Species in Morocco.
Revue D Intelligence Artificielle,
36(6), 855–862.
https://doi.org/10.18280/ria.360605
ElSharkawy, G., Helmy, Y. & Yehia, E. (2022). Employability Prediction of Information Technology Graduates using Machine Learning Algorithms.
International Journal of Advanced Computer Science and Applications,
13(10).
https://doi.org/10.14569/ijacsa.2022.0131043
Gao, H., Liang, G. & Chen, H. (2022). Multi-Population Enhanced Slime Mould Algorithm and with Application to Postgraduate Employment Stability Prediction.
Electronics,
11(2), 209.
https://doi.org/10.3390/electronics11020209
Ghasemian Sahebi, I., Toufighi, S.P. Azzavi, M. & Zare, F. (2023). Presenting an optimization model for multi cross-docking rescheduling location problem with metaheuristic algorithms.
OPSEARCH, 61(1), 137–162.
https://doi.org/10.1007/s12597-023-00694-5
Grunenberg, E., Peters, H., Francis, M. J., Back, M. D. & Matz, S. C. (2024). Machine learning in recruiting: predicting personality from CVs and short text responses.
Frontiers in Social Psychology,
1.
https://doi.org/10.3389/frsps.2023.1290295
Hosseini, S. A. (2024). Analysis of EEG Signals using Hierarchical Dispersion Entropy and Random Forest in the Neuromarketing Application. Computational Intelligence in Electrical Engineering, 15(1), 41-56. doi: 10.22108/isee.2023.133401.1561(in Persian)
Hunt, W. & O’Reilly, J. (2022).
Rapid Recruitment in Retail: Leveraging AI in the hiring of hourly paid frontline associates during the Covid-19 Pandemic.
https://doi.org/10.20919/alnb9606
Imani, H., Gholipour, A., Azar, A. & Pourezzat, A. A. (2019). Identifying Components of Staffing System to Develop Administrative Integrity. Journal of Public Administration, 11(2), 251-284. doi: 10.22059/jipa.2019.277466.2504 (in Persian)
Imianvan, A. A., Robinson, S. A., Asuquo, D. E., George, U. D., Dan, E. A., Ejodamen, P. U. & Udoh, A. E. (2024). Enhancing Job Recruitment Prediction through Supervised Learning and Structured Intelligent System: A Data Analytics Approach.
Journal of Advances in Mathematics and Computer Science,
39(2), 72–88.
https://doi.org/10.9734/jamcs/2024/v39i21869
Jafarnejad Chaghoshi, A., Rezasoltani, A. & Khani, A. M. (2024). Unleashing the Power of Ensemble Learning: Predicting National Ranks in Iran’s University Entrance Examination. Industrial Management Journal, 16(3), 457-481. doi: 10.22059/imj.2024.381521.1008178 (in Persian)
Jayanti, L. P. S. D. & Wasesa, M. (2022). Application of Predictive Analytics To Improve The Hiring Process In A Telecommunications Company. Jurnal CoreIT:
Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 8(1).
https://doi.org/10.24014/coreit.v8i1.16915
Jha, K., Likhitha, D., Chandana, M. S., Reddy, M. R. P., & Bhargavi, M. (2024, July). Career Prediction Using Machine Learning. In
2024 8th International Conference on Inventive Systems and Control (ICISC) (pp. 118-122). IEEE.
https://doi.org/10.1109/icisc62624.2024.00027
Kazai, A., Khani, A. M. and birami, S. (2021). The effect of supply chain quality management and innovation performance on the operational performance of businesses operating in the food industry of Golestan province. Industrial Management Studies, 19(62), 67-98. doi: 10.22054/jims.2021.58750.2612 (in Persian)
Khaljastani, S., Piri, H. & Sotoudeh, R. (2024). Presenting a Prediction Model for CEO Compensation Sensitivity using Meta-heuristic Algorithms (Genetics and Particle Swarm). Journal of Public Administration, 16(3), 562-600. doi: 10.22059/jipa.2024.373930.3482 (in Persian)
Kumar, V. & Garg, M. L. (2018). Predictive Analytics: A Review of Trends and Techniques.
International Journal of Computer Applications, 182(1), 31–37.
https://doi.org/10.5120/ijca2018917434
Ma, Y., Zhang, Z. & Ihler, A. (2020). A Deep Choice Model for Hiring Outcome Prediction in Online Labor Markets.
International Journal of Computers Communications & Control,
15(2).
https://doi.org/10.15837/ijccc.2020.2.3760
Meng, L., Bai, B., Zhang, W., Liu, L. & Zhang, C. (2023). Research on a Decision Tree Classification Algorithm Based on Granular Matrices.
Electronics,
12(21), 4470–4470.
https://doi.org/10.3390/electronics12214470
Hanif, A. M., Maarop, N., Kamaruddin, N. & Samy, G. N. (2024). Machine Learning Approach in Predicting Fraudulent Job Advertisement.
International Journal of Academic Research in Business and Social Sciences,
14(1), 1182–1193.
http://dx.doi.org/10.6007/IJARBSS/v14-i1/20532
Mosalmanzadeh, F., Koosha, H. & Saedi, K. (2025). Predicting the nature of fire based on machine learning: Logistic regression is an interpretable algorithm. Applied and basic Machine intelligence research, 2(1), 104-119. doi: 10.22034/abmir.2025.22313.1068
(in Persian)
Nagovitsyn, R. (2023). Predicting Student Employment in Teacher Education Using Machine Learning Algorithms.
Education & Self Development,
18(2), 133–148.
https://doi.org/10.26907/esd.18.2.10
Ozdemir, Y. & Nalbant, K. G. (2020). Personnel Selection for Promotion using an Integrated Consistent Fuzzy Preference Relations - Fuzzy Analytic Hierarchy Process Methodology: A Real Case Study.
Asian Journal of Interdisciplinary Research, 219–236.
https://doi.org/10.34256/ajir20117
Pampouktsi, P., Avdimiotis, S., Μaragoudakis, M. & Avlonitis, M. (2021). Applied Machine Learning Techniques on Selection and Positioning of Human Resources in the Public Sector.
Open Journal of Business and Management, 09(02), 536–556.
https://doi.org/10.4236/ojbm.2021.92030
Pessach, D., Singer, G., Avrahami, D., Chalutz Ben-Gal, H., Shmueli, E. & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming.
Decision Support Systems, 134(1), 113290.
https://doi.org/10.1016/j.dss.2020.113290
Raza, A., Munir, K., Almutairi, M., Younas, F. & Fareed, M. M. S. (2022). Predicting Employee Attrition Using Machine Learning Approaches.
Applied Sciences,
12(13), 6424.
https://doi.org/10.3390/app12136424
Thilak, K. D., Lalitha Devi, K., Kalaiselvi, K. & Teja, J. (2023). Revolutionizing University Graduate Employability: Leveraging Advanced Machine Learning Models to Optimize Campus Recruitment and Placement Strategies.
2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE), 1–6.
https://doi.org/10.1109/rmkmate59243.2023.10369300
Vinutha, K. & Yogisha, H. K. (2021, March). Prediction of employability of engineering graduates using machine learning techniques. In 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 742-745). IEEE.